On the Numerical Evaluation of Option Prices in Jump Diffusion Processes
نویسندگان
چکیده
The fair price of a financial option on an asset that follows a Poisson jump diffusion process satisfies a partial integro-differential equation. When numerical methods are used to solve such equations the integrals are usually evaluated using either quadrature methods or fast Fourier methods. Quadrature methods are expensive since the integrals must be evaluated at every point of the mesh. Though less so, Fourier methods are also computationally intensive since in order to avoid wrap around effects they require enlargement of the computational domain. They are also slow to converge when the parameters of the jump process are not smooth, and for efficiency require uniform meshes. We present a different and more efficient class of methods which are based on the fact that the integrals often satisfy differential equations. Depending on the process the asset follows, the equations are either ordinary differential equations or parabolic partial differential equations. Both types of equations can be accurately solved very rapidly. We discuss the methods and present results of numerical experiments.
منابع مشابه
Option Pricing on Commodity Prices Using Jump Diffusion Models
In this paper, we aim at developing a model for option pricing to reduce the risks associated with Ethiopian commodity prices fluctuations. We used the daily closed Unwashed Lekempti grade 5 (ULK5) coffee and Whitish Wollega Sesame Seed Grade3 (WWSS3) prices obtained from Ethiopia commodity exchange (ECX) market to analyse the prices fluctuations.The natures of log-returns of the prices exhibit a...
متن کاملFast Estimation of True Bounds on Bermudan Option Prices Under Jump-diffusion Processes
Fast pricing of American-style options has been a difficult problem since it was first introduced to the financial markets in 1970s, especially when the underlying stocks’ prices follow some jump-diffusion processes. In this paper, we extend the “true martingale algorithm” proposed by Belomestny et al. (2009) for the pure-diffusion models to the jump-diffusion models, to fast compute true tight...
متن کاملThe Evaluation of American Option Prices under Stochastic Volatility and Jump-diffusion Dynamics Using the Method of Lines
This paper considers the problem of numerically evaluating American option prices when the dynamics of the underlying are driven by both stochastic volatility following the square root process of Heston [18], and by a Poisson jump process of the type originally introduced by Merton [25]. We develop a method of lines algorithm to evaluate the price as well as the delta and gamma of the option, t...
متن کاملPricing of Commodity Futures Contract by Using of Spot Price Jump-Diffusion Process
Futures contract is one of the most important derivatives that is used in financial markets in all over the world to buy or sell an asset or commodity in the future. Pricing of this tool depends on expected price of asset or commodity at the maturity date. According to this, theoretical futures pricing models try to find this expected price in order to use in the futures contract. So in this ar...
متن کاملClosed formulas for the price and sensitivities of European options under a double exponential jump diffusion model
We derive closed formulas for the prices of European options andtheir sensitivities when the underlying asset follows a double-exponentialjump diffusion model, as considered by S. Kou in 2002. This author hasderived the option price by making use of double series where each termrequires the computation of a sequence of special functions, such thatthe implementation remains difficult for a large...
متن کامل